S.No.	MONTHS	NAME OF CHAPTER	LEARNING OUTCOMES
1.	APRIL	SOLUTIONS	Students will be able to understand
			 The formation of different
			types of solutions;
			 Concentration of solution
			in different units;
			 Henry's law andRaoult's law;
			 Ideal and non-ideal solutions;
			 Deviations of real solutions from
			Raoult's law;
			 Colligative properties of
			solutions and correlation with
			molar masses of the solutes;
			 Abnormal colligative properties exhibited
			by some solutes in solutions.
2.	MAY	ELECTROCHEMISTRY	Students will be able to understand•
			Electrochemical celland Galvanic and
			electrolytic cells;
			Nernst equation for calculating the EIVIF
			of galvanic cell and standard potential of
			Delative had a second advantation (
			Relation between standardpotential of
			the cell, Globs energy of cell reaction and
			 Resistivity (a) conductivity (w) and molar
			• Resistivity (β), conductivity (κ) and motal sources
			<pre>conductivity (@m) of forme solutions, e lenie(electrolytic) and electronic</pre>
			• Ionic(electrolytic) and electronic
			 Methods for measurement of
			conductivity of electrolytic solutions and
			calculation of their molarconductivity:
			The variation of conductivity and molar
			conductivity of solutions with
			change in their concentration and
			$^{\circ}m\Lambda$ (molar conductivity at
			zero concentration or infinite dilution).
			Kohlrausch law and its applications:
			• The construction of some primary and
			secondary batteriesand fuel cells:
			Corrosion
2	ILINE		Students will be able to understand The
J.			average and instantaneous rate of a
			reaction:
			• The rate of a reaction in terms of change
			in concentration of either of the reactants
			or products with time;
			• Elementary and complex reactions;

			 Molecularity and order of a reaction; Rate constant; The dependence of rate of reactions on concentration, temperature and catalyst; Integrated rate equations for the zero and first order reactions; The rate constants for zeroth and first order reactions; Collision theory.
4.	JULY	d and f BLOCK ELEMENTS	Students will be able to understand • The positions of the <i>d</i> - and <i>f</i> -block elements in the periodic table; • The electronic configurations of the transition (<i>d</i> -block) and the inner transition (<i>f</i> -block) elements; • The relative stability of various oxidation states in terms of electrode potential values; • The preparation, properties, structures and uses of some important compounds such as K ₂ Cr ₂ O ₇ and KMnO ₄ ; • The general characteristics of the <i>d</i> - and <i>f</i> -block elements and the general horizontal and group trends in them; • The properties of the <i>f</i> -block elements and comparative account of the lanthanoids and actinoids with respect to their electronic configurations, oxidation states and chemical behaviour.
5.	AUGUST	CO-ORDINATION CHEMISTRY	 The postulates of Werner's theory of coordination compounds; Coordination entity, central atom/ion, ligand, coordination number, coordination sphere, coordination polyhedron, oxidation number, homoleptic and heteroleptic; The rules of nomenclature of coordination compounds; The formulas and names of mononuclear coordination compounds; Different types of isomerism in coordination compounds; The nature of bonding in coordination compounds; The nature of bonding in coordination compounds; The nature of bonding in coordination compounds in terms of the Valence Bond and Crystal Field theories; The importance and applications of coordination compounds in our day to day life.
6.	SEPTEMBER	HALOALKANES AND HALOARENES	 Students will be able to understand Naming of haloalkanes and haloarenes according to the IUPAC system of nomenclature from their given structures; The reactions involved in the preparation of haloalkanes and

			 haloarenes and various reactions that they undergo; The structures of haloalkanes and haloarenes with various types of reactions; Stereochemistry as a tool for understanding the reaction mechanism; The applications of organo-metallic compounds; The environmental effects of polyhalogen compounds.
8.	OCTOBER	ALDEHYDE, KETONE AND CARBOXYLIC ACID	 The common and IUPAC names of aldehydes, ketones and carboxylic acids; The structures of the compounds containing functional groups namely carbonyl and carboxyl groups; The important methods of preparation and reactions of these classes of compounds; Physical properties and chemical reactions of aldehydes,ketones and carboxylic acids,with their structures; The mechanism of a few selected reactions of aldehydes and ketones; Various factors affecting the acidity of carboxylic acids and their reactions; The uses of aldehydes,ketones and carboxylic acids.
9	NOVEMBER	AMINE	 Students will be able to understand- Amines as derivatives of ammonia having a pyramidal structure; Amines as primary, secondary and tertiary; Naming of amines by common names and IUPAC system; The important methods of preparation of amines; The properties of amines; Difference between primary, secondary and tertiary amines; The method of preparation of diazonium salts and their importance in the synthesis of a series of aromatic compounds including azo dyes.

		BIOMOLECULES	 Students will be able to understand The characteristics of biomolecules like carbohydrates, proteins and nucleic acids and hormones; Structures of carbohydrates, proteins, nucleic acids and vitamins The difference between DNA and RNA; The role of biomolecules in biosystem.
10.	December	Revision + Project	
11.	January	Revision+Mock test	
12.	February & March	Board examination	